Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Energy ; 263, 2023.
Article in English | Scopus | ID: covidwho-2246180

ABSTRACT

The COVID-19 pandemic has resulted in an alarming accumulation of plastic waste. Herein, an integrated hydropyrolysis and hydrocracking process was performed to upcycle disposable masks into fuel-range iso-alkanes over carbon supported ruthenium (Ru/C). Experimental results indicated that catalyst type significantly affected product distribution during the hydropyrolysis and vapor-phase hydrocracking of disposable masks. Compared with zeolites-induced catalytic cascade process where up to ∼25.9 wt% yield of aromatic hydrocarbons such as toluene and xylenes were generated, a ∼82.7 wt% yield of desirable iso-alkanes with a high C5–C12 gasoline selectivity of 95.5% was obtained over Ru/C under 550 °C hydropyrolysis temperature and 300 °C hydrocracking temperature at 0.2 MPa H2. The cascade hydropyrolysis and hydrocracking process also exhibited high adaptability and flexibility in upcycling single-use syringes, food packaging, and plastic bags, generating 79.1, 81.6, and 80.3 wt% yields of fuel range iso/n-alkanes, respectively. This catalytic cascade hydrotreating process provides an efficient and effective approach to convert pandemic-derived plastic waste into gasoline-range fuel products. © 2022 Elsevier Ltd

2.
International Journal of Oil Gas and Coal Technology ; 30(2):130-156, 2022.
Article in English | Web of Science | ID: covidwho-1855052

ABSTRACT

The LUKOIL Neftohim Burgas (LNB) H-Oil hydrocracker performance at different operating conditions, and different crude oils, and processing of recycle of partially blended fuel oil (PBFO) was assessed. The lower throughput, a result from the Covid 19 pandemic, allowed the LNB H-Oil hydrocracker to operate at a capacity lower than 50% of the design and to process recycle of PBFO achieving a vacuum residue conversion of 93%. The impact of crude oil slate, and processing of recycle of PBFO on conversion and on the unconverted hydrocracked vacuum residue quality was discussed. Intercriteria analysis was employed to evaluate the statistically meaningful relations of the operating conditions to the H-Oil conversion and yields. Regression equations were developed and discussed. [Received: April 16, 2021;Accepted: 28, 2021]

3.
Catalysts ; 12(2):237, 2022.
Article in English | ProQuest Central | ID: covidwho-1715128

ABSTRACT

The transition from fossil to bio-based fuels is a requisite for reducing CO2 emissions in the aviation sector. Jet biofuels are alternative aviation fuels with similar chemical composition and performance of fossil jet fuels. In this context, the Hydroprocessing of Esters and Fatty Acids (HEFA) presents the most consolidated pathway for producing jet biofuels. The process for converting esters and/or fatty acids into hydrocarbons may involve hydrodeoxygenation, hydrocracking and hydroisomerization, depending on the chemical composition of the selected feedstock and the desired fuel properties. Furthermore, the HEFA process is usually performed under high H2 pressures and temperatures, with reactions mediated by a heterogeneous catalyst. In this framework, supported noble metals have been preferably employed in the HEFA process;however, some efforts were reported to utilize non-noble metals, achieving a similar performance of noble metals. Besides the metallic site, the acidic site of the catalyst is crucial for product selectivity. Bifunctional catalysts have been employed for the complete process of jet biofuel production with standardized properties, with a special remark for using zeolites as support. The proper design of heterogeneous catalysts may also reduce the consumption of hydrogen. Finally, the potential of enzymes as catalysts for intermediate products of the HEFA pathway is highlighted.

SELECTION OF CITATIONS
SEARCH DETAIL